研飞客户端支持数万种期刊查询,助你在阅读和写作中随时了解期刊动态

International Journal for Uncertainty Quantification

短名Int. J. UncertaintyQuantification
Journal Impact1.59
国际分区MATHEMATICS, INTERDISCIPLINARY APPLICATIONS(Q3)
期刊索引SCI Q3中科院 4 区
ISSN2152-5080, 2152-5099
h-index27
国内分区工程技术(4区)工程技术工程综合(4区)工程技术数学跨学科应用(4区)

《International Journal for Uncertainty Quantification》致力于在不确定性存在的情况下,传播复杂系统分析、建模、设计和控制领域的最新研究成果。该期刊强调跨随机分析、统计建模和科学计算的方法。研究对象通常由具有多尺度特征的微分方程所控制。特别关注的主题包括不确定性的表示、跨尺度的不确定性传播、解决维度灾难、随机偏微分方程的长期积分、基于数据驱动的方法构建随机模型、预测计算科学的验证与不确定性量化,以及高维空间中不确定性的可视化。此外,贝叶斯计算和机器学习技术在随机多尺度系统中的应用,尤其是在模型选择、分类和决策方面,也受到关注。我们特别鼓励关于现代实验和建模方法与预测科学动态耦合的研究报告。在物理和生物科学的各个领域中,应用不确定性量化的方法都是合适的。

期刊主页投稿网址

阅读文献时,研飞即可帮你快速了解期刊,查询影响因子与分区,智能高亮期刊预警!

涉及主题计算机科学数学统计机器学习物理不确定度量化人工智能工程类数学优化量子力学应用数学算法数学分析
出版信息出版商: Begell House Inc.出版周期: 期刊类型: journal开源期刊: 非开源
基本数据创刊年份: 2014原创研究文献占比100.00%自引率:6.70%Gold OA占比: 0.00%

期刊引文格式

这些示例是对学术期刊文章的引用,以及它们应该如何出现在您的参考文献中。

并非所有期刊都按卷和期组织其已发表的文章,因此这些字段是可选的。有些电子期刊不提供页面范围,而是列出文章标识符。在这种情况下,使用文章标识符而不是页面范围是安全的。

只有1位作者的期刊

有2位作者的期刊

有3位作者的期刊

有5位以上作者的期刊

书籍引用格式

以下是创作和编辑的书籍的参考文献的示例。

学位论文引用格式

网页引用格式

这些示例是对网页的引用,以及它们应该如何出现在您的参考文献中。

专利引用格式

手工熬夜修改参考文献?研飞自动匹配期刊,一键轻松成稿,支持 Word/WPS

点击下方按钮,免费开启试用!

最新文章

SENSITIVITY ANALYSES OF A MULTI-PHYSICS LONG-TERM CLOGGING MODEL FOR STEAM GENERATORS

2024-1-1

Application of global sensitivity analysis for identification of probabilistic design spaces

2024-1-1

SOLVING STOCHASTIC INVERSE PROBLEMS FOR CFD USING DATA-CONSISTENT INVERSION AND AN ADAPTIVE STOCHASTIC COLLOCATION METHOD

2024-1-1

HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS

2024-1-1

UNCERTAINTY QUANTIFICATION AND GLOBAL SENSITIVITY ANALYSIS OF SEISMIC FRAGILITY CURVES USING KRIGING

2024-1-1

Extremes of vector-valued processes by finite dimensional models

2024-1-1

Learning a class of stochastic differential equations via numerics-informed Bayesian denoising

2024-1-1

Maximizing Regional Sensitivity Analysis indices to find sensitive model behaviors

2024-1-1

Derivative-based Shapley value for global sensitivity analysis and machine learning explainability

2024-1-1

EXTREME LEARNING MACHINES FOR VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS

2024-1-1

Probabilistic Uncertainty Propagation Using Gaussian Process Surrogates

2024-1-1

Measuring inputs-outputs association for time-depending hazard models under safety objectives using kernels

2024-1-1

HYPER-DIFFERENTIAL SENSITIVITY ANALYSIS FOR NONLINEAR BAYESIAN INVERSE PROBLEMS

2024-1-1

Uncertainty Analysis for Drift-Diffusion Equations

2024-1-1

Analysis of the Challenges in Developing Sample-Based Multi-fidelity Estimators for Non-deterministic Models

2024-1-1

Preface

2024-1-1

A novel probabilistic transfer learning strategy for polynomial regression

2024-1-1

Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems

2024-1-1

Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods

2024-1-1

Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods

2024-1-1

PARALLEL PARTIAL EMULATION IN APPLICATIONS

2024-1-1

Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations

2024-1-1

Variance-based sensitivity of Bayesian inverse problems to the prior distribution

2024-1-1

Structure-Preserving Model Order Reduction of Random Parametric Linear Systems via Regression

2024-1-1

A Bayesian Calibration Framework with Embedded Model Error for Model Diagnostics

2024-1-1

Sobol' sensitivity indices– A Machine Learning approach using the Dynamic Adaptive Variances Estimator with Given Data

2024-1-1

Bayesian³ Active learning for regularized arbitrary multi-element polynomial chaos using information theory

2024-1-1

DECISION THEORETIC BOOTSTRAPPING

2023-12-22

MODEL ERROR ESTIMATION USING PEARSON SYSTEM WITH APPLICATION TO NONLINEAR WAVES IN COMPRESSIBLE FLOWS

2023-12-11

A DOMAIN-DECOMPOSED VAE METHOD FOR BAYESIAN INVERSE PROBLEMS

2023-12-6

MORE POWERFUL HSIC-BASED INDEPENDENCE TESTS, EXTENSION TO SPACE-FILLING DESIGNS AND FUNCTIONAL DATA

2023-12-1

MULTILEVEL MONTE CARLO ESTIMATORS FOR DERIVATIVE-FREE OPTIMIZATION UNDER UNCERTAINTY

2023-11-29

HYPERDIFFERENTIAL SENSITIVITY ANALYSIS IN THE CONTEXT OF BAYESIAN INFERENCE APPLIED TO ICE-SHEET PROBLEMS

2023-10-26

LIKELIHOOD AND DEPTH-BASED CRITERIA FOR COMPARING SIMULATION RESULTS WITH EXPERIMENTAL DATA, IN SUPPORT OF VALIDATION OF NUMERICAL SIMULATORS

2023-9-28

A DIMENSION-ADAPTIVE COMBINATION TECHNIQUE FOR UNCERTAINTY QUANTIFICATION

2023-9-14

HYPER-DIFFERENTIAL SENSITIVITY ANALYSIS FOR NONLINEAR BAYESIAN INVERSE PROBLEMS

2023-8-24

NESTED OPTIMAL UNCERTAINTY QUANTIFICATION FOR AN EFFICIENT INCORPORATION OF RANDOM FIELDS-APPLICATION TO SHEET METAL FORMING

2023-7-6

LONG SHORT-TERM RELEVANCE LEARNING

2023-6-28

A BAYESIAN NEURAL NETWORK APPROACH TO MULTI-FIDELITY SURROGATE MODELING

2023-6-12

IMPROVING ACCURACY AND COMPUTATIONAL EFFICIENCY OF OPTIMAL DESIGN OF EXPERIMENTS VIA GREEDY BACKWARD APPROACH

2023-6-6

BAYESIAN CALIBRATION WITH ADAPTIVE MODEL DISCREPANCY

2023-5-19

QUANTIFYING UNCERTAIN SYSTEM OUTPUTS VIA THE MULTI-LEVEL MONTE CARLO METHOD-DISTRIBUTION AND ROBUSTNESS MEASURES

2023-1-1

GLOBAL SENSITIVITY ANALYSIS USING DERIVATIVE-BASED SPARSE POINCARÉ CHAOS EXPANSIONS

2023-1-1

帮你贴心管理全部的文献

研飞ivySCI,高效的论文管理

投稿经验分享

分享我的经验,帮你走得更远

Built withby Ivy Science
Copyright © 2020-2024
版权所有:南京青藤格致信息科技有限公司